
On the unified approach to anisotropic and isotropic
elasticity for singularity, interface and crack

in dissimilar media

S.T. Choi, H. Shin, Y.Y. Earmme *

Department of Mechanical Engineering ME3013, Korea Advanced Institute of Science and Technology,

Science Town, Daejeon 305-701, South Korea

Received 24 June 2002; received in revised form 18 November 2002

Abstract

Proposed in this paper is the equivalence between anisotropic and isotropic elasticity for two-dimensional defor-

mation under certain conditions. That is, the isotropic elasticity can be reconstructed in the same framework of the

anisotropic elasticity, when the interface between dissimilar media lies along a straight line. Therefore, many known

solutions for an anisotropic bimaterial are valid for a bimaterial, of which one or both of the constituent materials are

isotropic. The usefulness of the equivalence is that the solutions for singularities and cracks in an anisotropic/isotropic

bimaterial can easily be obtained without solving the boundary value problems directly. The interaction solutions of

singularities, interfaces, and cracks in infinite anisotropic bimaterial are summarized, to be used for the cases of iso-

tropic/isotropic and anisotropic/isotropic bimaterials. Conservation integrals also have the similar analogy between

anisotropic and isotropic elasticity so that J integral and J -based mutual integral M are expressed in the same complex

forms for anisotropic and isotropic materials, when both end points of the integration paths are on the straight in-

terface. The use of J andM integrals together with the present equivalence are exemplified to obtain energy release rate,

stress intensity factors, and T-stresses of interfacial cracks lying in the interface of anisotropic/anisotropic, isotropic/

isotropic, or anisotropic/isotropic solids.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In 2-D linear elasticity, an interesting question often arises: how can a solution for isotropic material be
obtained from a solution for anisotropic material with the same geometry and boundary condition? For

trivial case in which the in-plane stresses are prescribed at infinity the solution for the stress is independent

of the elastic constant, hence, the relation between the solutions for the isotropic and anisotropic material is

International Journal of Solids and Structures 40 (2003) 1411–1431

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +82-42-869-3013; fax: +82-42-869-3210.

E-mail address: yyearmme@kaist.ac.kr (Y.Y. Earmme).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0020-7683(02)00671-6

mail to: yyearmme@kaist.ac.kr


obvious; they are the same. If, on the other hand a single dislocation lies in infinite isotropic medium, its

solution for stresses is different from that for anisotropic medium with the otherwise identical conditions.

Since the isotropy is a very special case of anisotropy, it is no surprise that some of the isotropic solutions

can be obtained from the anisotropic solutions by simply using the isotropic constants. The difficulties
encountered in obtaining the isotropic solution from its anisotropic counterpart are more of an artifact of

the formulation used in obtaining the anisotropic elasticity solution. Two-dimensional isotropic elasticity is

usually formulated by the potentials of the elegant works of Muskhelishvili (1953), which are the stepstones

for various kinds of 2-D isotropy problems. On the other hand, the most commonly used formulation in

anisotropic elasticity is from Lekhnitskii (1963); Eshelby et al. (1953) and Stroh (1958), known as Stroh

formalism that represents the displacements and stresses in terms of a complex function vector fðzÞ and two

complex matrices, A and B (these quantities will be defined later in this study). One would expect that

Muskhelishvili�s complex potentials could be easily obtained from the corresponding complex function
vector fðzÞ when the material is isotropic. But the relation has not been clearly investigated. In calculating A

and B, an eigenvalue problem must be solved. It turns out that the corresponding eigenvalue problem has

repeated eigenvalues when the material is isotropic. This creates difficulties when constructing A and B, for

they span essentially the eigenvector space that is not complete for isotropic materials.

Ting and Hwu (1988) presented a method how to construct A and B in such degenerate cases. Their

method is rigorous, however, it yields the quite complicated result, and moreover does not show the relation

of the anisotropic solution with the familiar potentials of Muskhelishvili (1953) in isotropic elasticity. If an

anisotropic solution is written in terms of A and B, the corresponding isotropic solution cannot be obtained
by simply using the isotropic elasticity constants. However, if an anisotropic solution can be written in

certain combinations of A and B, so that the solution is expressed as a function of the Barnett–Lothe tensors

(Barnett and Lothe, 1973), then the issue of repeated eigenvalues can be circumvented. The Barnett–Lothe

tensors can be computed from the elastic constants through integration without the need of solving the

eigenvalue problem. In this case, the isotropic solution is obtained from the anisotropic solution by simply

using the isotropic elastic constants. Such reductions from anisotropic to isotropic solutions have been

discussed in Qu and Li (1991) and Qu et al. (1992) for interfacial dislocations, and in Qu and Bassani (1993)

for interfacial cracks. Of course, not all bimaterial solutions can be expressed in terms of the Barnett–Lothe
tensors, an example being the Green�s function in a bimaterial (Qu, 1992). In case like this, the isotropic

solutions cannot be obtained by simply using the isotropic elastic constants in the anisotropic solutions.

One of the aims of the present work is to put the anisotropic and isotropic formulations in as similar

forms as possible, and consequently the simple and straightforward contrast between the analytic functions

in Stroh formalism for anisotropic elasticity and the potentials by Muskhelishvili for isotropic elasticity are

presented. As a result, the explanation regarding the inaccessibility to isotropy solution from the more

general anisotropic solution is elaborated on, and a method to guess the isotropic solution from the

anisotropic solution for the cases of a singularity (such as a point force and dislocation) and a uniform
stress applied at infinity is suggested and some comparisons of the structures of the solutions are made.

As the bimaterial is in wide use, the solutions for the bimaterial system became important, and Suo

(1989) presented the solution for isotropic bimaterial. The same author (Suo, 1990) also solved the

anisotropic bimaterial problem. The former work is formulated in terms of the Muskhelishvili potential

while the latter work in terms of the analytic functions based on the Stroh formalism. Both works make use

of the analytic continuation argument in order to get the solutions for the cases of a point singularity, or the

surface tractions on the interfacial crack surface. It is found in this work that the solution for isotropy is

easily obtained from that for anisotropy, and vice versa. Also the present method is applicable for
anisotropic/isotropic bimaterial system, which is now used in MEMS packaging of glass/silicon bonding

(Go and Cho, 1999; Labossiere et al., 2002).

The J integral (Rice, 1968) has been extensively studied for crack in homogeneous materials as well as in

bimaterials. For isotropic material this integral was written in terms of the Muskhelishvili potential
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(Budiansky and Rice, 1973) while for anisotropic material Yeh et al. (1993) and recently Kim et al. (2001)

obtained the J integral in terms of the analytic functions based on the Stroh formalism. It is now found that

as long as the crack lies along the interface, both cases are written in the same form, showing the advantage

of the present approach. Closely related to this topic is the mutual integral M proposed by Chen and Shield
(1977), which is path-independent and has been used together with the J integral for separation of Mode I,

II and III (Cho et al., 1994). This M integral is also shown to be written in the same form regardless of

whether the solids comprise of isotropic (homogeneous), anisotropic (homogeneous), isotropic/isotropic,

anisotropic/anisotropic or isotropic/anisotropic materials.

2. Linear theory of elasticity for 2D deformation

2.1. Anisotropic elasticity

We begin with the brief review of anisotropic elasticity by considering a generalized two-dimensional

deformation, in which the displacements uj depend only on x1 and x2. The constitutive equations for a linear
elastic material are

rij ¼
X3
k;m¼1

Cijkm
ouk
oxm

; ði; j ¼ 1; 2; 3Þ ð2:1Þ

in which rij are the stresses and Cijkm the elastic constants. The equations of equilibrium are

X3
j;k;m¼1

Cijkm
o2uk
oxjoxm

¼ 0: ð2:2Þ

A general solution for the displacements satisfying Eq. (2.2) and the corresponding stresses may be written

as (Eshelby et al., 1953; Stroh, 1958)

oui
ox1

� �
¼ 2Re½Af 0ðzÞ�; ð2:3aÞ

fr2ig ¼ 2Re½Bf 0ðzÞ�; ð2:3bÞ

fr1ig ¼ 2Re½Kf 0ðzÞ�; ð2:3cÞ
where

f 0ðzÞ ¼ f 0
1ðz1Þ; f 0

2ðz2Þ; f 0
3ðz3Þ

� �T
: ð2:4Þ

Eq. (2.3a) is the differentiated form of

fuig ¼ 2Re½AfðzÞ�: ð2:5Þ

Here and throughout the paper, the overbar represents the complex conjugate and the prime, the derivative

with respect to the associated argument. The functions fjðzjÞ are analytic functions of complex variable
zj ¼ x1 þ pjx2. Each column of A and each of pj�s are the eigenvector and the eigenvalue with positive

imaginary part, respectively, of the sextic equation

X3
k¼1

Ci1k1

�
þ paðCi1k2 þ Ci2k1Þ þ p2aCi2k2

�
Aka ¼ 0: ð2:6Þ
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The matrix B is given by

Bij ¼
X3
k¼1

ðCi2k1 þ pjCi2k2ÞAkj; ð2:7Þ

and

Kij ¼ 
Bijpj ðnot sum over jÞ: ð2:8Þ

Throughout this paper we do not employ summation rule unless stated otherwise. The matrices A and B are

not unique in the sense that any arbitrary constant can be multiplied to the eigenvectors (the column vectors

of A and B). To get the similarity between anisotropic and isotropic elasticity in the subsequent sections, the

arbitrary normalizing factor is chosen so that the matrix B is non-dimensional, and the matrix A has the

dimension of compliance. If Eq. (2.6) has three distinct pairs of complex roots on which we are concen-

trating (the isotropic solid having multiple roots of Eq. (2.6) is dealt with in the subsequent subsection), the

matrices A and B are non-singular and may be used to define

M
1 � iAB
1; ð2:9Þ

which is a positive definite Hermitian matrix (Stroh, 1958). Here, i ¼
ffiffiffiffiffiffiffi

1

p
and ð Þ
1

stands for the inverse

of the matrix. Explicit expressions of A, B, andM in terms of elastic constants are given in Suo (1990) and

Ting (1996) and we present them for cubic materials in Appendix A for future use in examples.

Of particular importance are the following derivatives of displacements and tractions that must be

continuous across the perfectly-bonded interface x2 ¼ 0:

oui
ox1

ðx1Þ
� �

¼ Af 0ðx1Þ þ �AA�ff 0ðx1Þ; ð2:10aÞ

fr2iðx1Þg ¼ Bf 0ðx1Þ þ �BB�ff 0ðx1Þ; ð2:10bÞ

fr1iðx1Þg ¼ Kf 0ðx1Þ þ �KK�ff 0ðx1Þ: ð2:10cÞ

Eq. (2.10a) is equivalent to the continuity of displacements. A function f ðzÞ is an analytic function of

z ¼ x1 þ px2 for x2 > 0 (or x2 < 0) for any p if it is analytic for x2 > 0 (or x2 < 0) for one p, where p is any

complex number with positive imaginary part (Suo, 1990), therefore, one can refer to fjðzÞ instead of fjðzjÞ
and, if necessary, z is reinterpreted as zj.

2.2. Isotropic elasticity

The components of the stresses and displacements for an isotropic body under plane deformation are

expressed in terms of Muskhelishvili complex potentials for inplane and antiplane problems as follows

(Muskhelishvili, 1953; Cho et al., 1994):

r11 þ r22 ¼ 2½UðzÞ þ UðzÞ�; ð2:11aÞ

r22 þ ir12 ¼ UðzÞ þ XðzÞ þ ð�zz
 zÞU0ðzÞ; ð2:11bÞ

r32 þ ir31 ¼ xðzÞ; ð2:11cÞ


2iG
o

ox1
ðu2 þ iu1Þ ¼ jUðzÞ 
 XðzÞ 
 ð�zz
 zÞU0ðzÞ; ð2:11dÞ
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ou3
ox1

¼ 1

2Gi
xðzÞ
h


 xðzÞ
i
; ð2:11eÞ

where j ¼ 3
 4m for plane strain and ð3
 mÞ=ð1þ mÞ for plane stress, m and G are Poisson�s ratio and shear

modulus, respectively. It is known that the isotropic elasticity is a special case of the anisotropic elasticity,

i.e., when the three eigenvalues of Eq. (2.6) degenerate and p1 ¼ p2 ¼ p3 ¼ i, and furthermore, only two

independent eigenvectors can be found (Ting, 1996). With a view to relate the potentials UðzÞ, XðzÞ and xðzÞ
in Eqs. (2.11a)–(2.11e) with f 0ðzÞ in Eqs. (2.3a)–(2.3c) and Eq. (2.4), we rewrite Eqs. (2.11a)–(2.11e) as

follows:

oui
ox1

� �
¼ 2Re½A
g0ðzÞ�; ð2:12aÞ

fr2ig ¼ 2Re½B
g0ðzÞ�; ð2:12bÞ

fr1ig ¼ 2Re½K
g0ðzÞ�; ð2:12cÞ
where

g0ðzÞ ¼ ½UðzÞ;XðzÞ þ ð�zz
 zÞU0ðzÞ;xðzÞ�T ¼ f 0
 ðzÞ þ ð�zz
 zÞQ
 � f 00
 ðzÞ; ð2:13aÞ

f 0

 ðzÞ ¼ ½UðzÞ;XðzÞ;xðzÞ�T; ð2:13bÞ

A
 ¼ 1

4Gi

ji 
i 0

j 1 0
0 0 2

2
4

3
5; ð2:14aÞ

B
 ¼ 1

2

i 
i 0

1 1 0

0 0 1

2
4

3
5; ð2:14bÞ

K
 ¼ 1

2

3 
1 0

i 
i 0

0 0 
i

2
4

3
5; ð2:14cÞ

Q
 ¼
0 0 0

1 0 0

0 0 0

2
4

3
5: ð2:14dÞ

Take Eq. (2.12b) as an example for proof. From Eqs. (2.11b) and (2.11c),

r21 ¼
1

2i
UðzÞ
h

þ XðzÞ þ ð�zz
 zÞU0ðzÞ 
 UðzÞ 
 XðzÞ 
 ðz
 �zzÞU0ðzÞ
i
; ð2:15aÞ

r22 ¼
1

2
UðzÞ
h

þ XðzÞ þ ð�zz
 zÞU0ðzÞ þ UðzÞ þ XðzÞ þ ðz
 �zzÞU0ðzÞ
i
; ð2:15bÞ

r23 ¼
1

2
xðzÞ
h

þ xðzÞ
i
; ð2:15cÞ

hence,

fr2ig ¼ B
f 0

 ðzÞ þ �BB
�ff 0


 ð�zzÞ þ ð�zz
 zÞU0ðzÞb
 þ ð�zz
 zÞU0ðzÞ�bb
; ð2:16Þ
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where f 0

 ðzÞ is defined in Eq. (2.13b) and b
 ¼ ½
i=2; 1=2; 0�T. Eq. (2.16) is further rewritten by introducing

g0ðzÞ and Q
 (Eqs. (2.13a) and (2.14d)), yielding Eq. (2.12b). In a similar way, Eqs. (2.12a) and (2.12c) can

be justified.

Several points are due: (i) Notice the similarity between Eqs. (2.3a) and (2.12a), Eqs. (2.3b) and (2.12b),
Eqs. (2.3c) and (2.12c), and Eqs. (2.4) and (2.13b), respectively, and the difference between the isotropic and

anisotropic elasticity as is evident from Eq. (2.13a). This difference makes the two different approaches

justifiable, taken by Muskhelishvili (1953) and Stroh (1958), respectively. (ii) When x2 ¼ 0,

g0ðx1Þ ¼ f 0

 ðx1Þ ¼ ½Uðx1Þ;Xðx1Þ;xðx1Þ�T; ð2:17aÞ

f 0ðx1Þ ¼ ½f 0
1ðx1Þ; f 0

2ðx1Þ; f 0
3ðx1Þ�

T
; ð2:17bÞ

and consequently, the difference between the Muskhelishvili potentials and the Stroh analytic functions

disappears if one identifies f 0

 ðx1Þ as f 0ðx1Þ. As will be seen later, this observation has significant conse-

quences when we are dealing with the bimaterial whose interface is along the x1-axis (and even with an

interfacial crack along the x1-axis).
We, therefore, write the derivative of the displacements and stresses when x2 ¼ 0 as

oui
ox1

ðx1Þ
� �

¼ A
f 0

 ðx1Þ þ �AA
�ff 0


 ðx1Þ; ð2:18aÞ

fr2iðx1Þg ¼ B
f 0

 ðx1Þ þ �BB
�ff 0


 ðx1Þ; ð2:18bÞ

fr1iðx1Þg ¼ K
f 0

 ðx1Þ þ �KK
�ff 0


 ðx1Þ: ð2:18cÞ
The positive definite Hermitian matrix M
, which will be useful in the following sections, is defined by

M

1 � iA
B

1 ¼ 1

4G

j þ 1 ðj 
 1Þi 0


ðj 
 1Þi j þ 1 0

0 0 4

2
4

3
5: ð2:19Þ

2.3. Equivalence between anisotropic and isotropic elasticity

The reformulation of isotropic elasticity described in the previous Section 2.2 gives us some analogy

between anisotropic and isotropic elasticity. That is, referring to Eqs. (2.10a)–(2.10c) and (2.18a)–(2.18c),

the continuity conditions of the derivatives of displacements and tractions along x1-axis are expressed in the

identical mathematical forms. Therefore, the matrices A
, B
, K
, and f
ðzÞ for an isotropic material cor-

respond to A, B, K, and fðzÞ for an anisotropic material, respectively. This analogy results in the following

equivalence theorem.

Equivalence theorem. In employing the analytic continuation during the solution procedure for a bimaterial
undergoing two dimensional deformation, the Stroh formalism of the anisotropic elasticity can be used re-

gardless of whether the bimaterial is comprised of anisotropic/anisotropic, isotropic/isotropic, or isotropic/

anisotropic materials, provided that the interface of the bimaterial is along a straight line, say, x1-axis.
Hereafter, we do not distinguish A
, B
, K
,M
, and f
ðzÞ from A, B, K,M, and fðzÞ, respectively, unless

stated otherwise. The equivalence theorem proposed in this paper provides us with the solutions for iso-

tropic solids transcribable from those for anisotropic solids as will be seen later. Even though the interface

is partially debonded, that is, there exists an interfacial crack, the equivalence is valid, which is exploited in

Section 3.2. Furthermore, conservation integrals also have the same analogy so that J integral and J -based
mutual integral are expressed in the same complex forms for anisotropic and isotropic materials, when both

end points of the integration paths are on the straight interface (Section 4). These conservation integrals are
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applied to obtain the energy release rate, the stress intensity factors, and T-stresses of interfacial cracks

(Section 4). The above equivalence between anisotropic and isotropic elasticity is also valid for homo-

geneous materials and semi-infinite bodies with free or fixed surface, which are the special cases of a bi-

material.

2.4. Generalized Dundurs parameter

Generalized Dundurs parameters for dissimilar anisotropic materials are as follows (Beom and Atluri,

1995; Ting, 1995):

a ¼ ðL1 
 L2ÞðL1 þ L2Þ
1
; b ¼ ðL
1

1 þ L
1
2 Þ
1ðW1 
W2Þ; ð2:20Þ

in which the subscripts 1 and 2 stand for materials 1 and 2, respectively, and

L
1 ¼ RefM
1g ð2:21Þ
is a symmetric real matrix and

W ¼ 
ImfM
1g ð2:22Þ
is an antisymmetric real matrix. It is noted that the two real matrices L andW have smooth limits even if A

and B become singular. If a final result involves only the matrices L andW (also a and b but not A and B),

it is also valid for any degenerate cases. The real matrices L and W can be calculated directly from the

elastic constants without solving the eigenvalue problem, such as the Barnett–Lothe tensors (Barnett and

Lothe, 1973). The stress fields in a bimaterial, with tractions prescribed on its outer boundary, depend only
on a and b, regardless of whether the constituent materials of the bimaterial are anisotropic/anisotropic,

isotropic/isotropic or anisotropic/isotropic (Beom and Atluri, 1995; Ting, 1995). Another bimaterial

parameter e, the oscillatory index, is related to b by

e ¼ 1

2p
ln

1
 b
1þ b


 �
; b ¼

�

 ð1=2Þtrðb2Þ

�1=2
; ð2:23Þ

where trð�Þ means the trace of ð�Þ. An interfacial crack between dissimilar materials 1 and 2 has non-

oscillatory character if e ¼ 0. For the isotropic/isotropic bimaterial case, the matrices a and b as computed

from Eqs. (2.20)–(2.22) together with Eq. (2.19) reduce to

a ¼
a 0 0

0 a 0

0 0 c

2
4

3
5; b ¼

0 b 0


b 0 0

0 0 0

2
4

3
5; ð2:24Þ

in which a, b, and c, respectively, are two Dundurs parameters for inplane and one for antiplane defor-

mation of an isotropic solid defined as (Dundurs, 1969)

a ¼ G1ðj2 þ 1Þ 
 G2ðj1 þ 1Þ
G1ðj2 þ 1Þ þ G2ðj1 þ 1Þ ; b ¼ G1ðj2 
 1Þ 
 G2ðj1 
 1Þ

G1ðj2 þ 1Þ þ G2ðj1 þ 1Þ ; c ¼ G1 
 G2

G1 þ G2

: ð2:25Þ

For the isotropic/cubic bimaterial case, as seen in Appendix A, the generalized Dundurs parameters a and b
defined in Eq. (2.20) reduce to the same forms as in Eq. (2.24), in which a, b, and c are replaced by

a ¼ 4G
j þ 1




 C2

11 
 C2
12

C11

ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p
��

4G
j þ 1




 C2

11 
 C2
12

C11

ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p
�
; ð2:26aÞ

b ¼ 1

C11 þ C12




 j 
 1

4G

��
j þ 1

4G



þ C11

ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p

C2
11 
 C2

12

�
; ð2:26bÞ
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c ¼ G
 C66

Gþ C66

: ð2:26cÞ

Here C11, C12, and C66 are three independent elastic constants of the cubic material and g is defined in

Eq. (A.2). Interestingly the stress fields in an isotropic/cubic bimaterial depend only on two Dundurs

parameters a and b for inplane deformation, as can be concluded from Beom and Atluri (1995), even

though the number of the independent elastic constants of the bimaterial is 5 (G, j, C11, C12, and C66).

3. Singularities and interfacial cracks in an anisotropic/anisotropic, isotropic/isotropic or anisotropic/isotropic

bimaterial

Since the equivalence theorem described in the previous section provides us with general methods to

obtain the solution for isotropic/isotropic or anisotropic/isotropic bimaterial from that for anisotropic/
anisotropic bimaterial, in this section we summarize the solutions of singularities and interfacial cracks in

dissimilar anisotropic media and utilize the equivalence theorem.

3.1. A singularity in a bimaterial

We take the solution for line force or dislocation at ðx01; x02Þ in an infinite anisotropic, homogeneous

medium as (Stroh, 1958; Suo, 1990)

f 00ðzjÞ ¼
q1

2pðz1 
 s1Þ
;

q2
2pðz2 
 s2Þ

;
q3

2pðz3 
 s3Þ

� �T
; i:e:; f 0

0jðzjÞ ¼
qj

2pðzj 
 sjÞ
; ð3:1Þ

where sj ¼ x01 þ ljx
0
2 and q ¼ fqjg is related to Burgers vector b and force per unit length p as

q ¼ B
1ðM
1 þ �MM
1Þ
1
b
 A
1ðMþ �MMÞ
1

p: ð3:2Þ

When a singularity is located at ðx01; x02Þ in an infinite isotropic, homogeneous material, the solutions f 00ðzÞ
are as follows (Muskhelishvili, 1953; Suo, 1989):

f 00ðzÞ ¼ ½U0ðzÞ;X0ðzÞ;x0ðzÞ�T ¼
"

 Q
z
 s

;
�QQĵj
z
 s


 Qð�ss
 sÞ
ðz
 sÞ2

;
q

z
 s

#T
; ð3:3Þ

where ĵj ¼ j for a point force and ĵj ¼ 
1 for a dislocation, and s ¼ x01 þ ix02 is the position of the singu-

larity. Q and q are defined in terms of the Burgers vector b and the force per unit length p as

Q ¼ p1 þ ip2
2pðj þ 1Þ þ

Giðb1 þ ib2Þ
pðj þ 1Þ ; q ¼ p3

2pi
þ Gb3

2p
: ð3:4Þ

Eqs. (3.3) and (3.4) were obtained from the theory of isotropic elasticity using the method of Muskhe-

lishvili, however, it is convenient to write them in a form as close as possible to Eqs. (3.1) and (3.2), namely,

f 00ðzÞ ¼ ½U0ðzÞ;X0ðzÞ;x0ðzÞ�T ¼ q

2pðz
 sÞ þ
ð�ss
 sÞQ
 � q
2pðz
 sÞ2

¼ q1
2pðz
 sÞ ;

q2
2pðz
 sÞ

"
þ ð�ss
 sÞq1
2pðz
 sÞ2

;
q3

2pðz
 sÞ

#T
; ð3:5Þ

where q is defined by Eq. (3.2) using isotropic A, B andM given in Eqs. (2.14a), (2.14b), (2.19), respectively.
Note the similarity of Eq. (3.5) to Eq. (3.1). The only difference is the additional term ð�ss
 sÞq1=2pðz
 sÞ2,
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which can be interpreted as follows: for a singularity at the origin, f 0
02ðzÞ � X0ðzÞ ¼ q2=2pz, while for a

singularity at z ¼ s,

f 0
02ðzÞ � X0ðzÞ ¼

q2
2pðz
 sÞ þ

ð�ss
 sÞq1
2pðz
 sÞ2

ð3:6Þ

from the well-known result by Muskhelishvili for translation of the coordinate (f 0
01ðzÞ � U0ðzÞ ¼ q1=2pz, on

the other hand, changes to q1=2pðz
 sÞ (Muskhelishvili, 1953)). The difference in f 0
02ðzÞ between the iso-

tropic and anisotropic elasticity may be attributed to the degenerate eigenvalues of Eq. (2.6) for the case of

isotropic elasticity, and this seems to be the only obstacle to be surmounted in passing from anisotropy to

isotropy in elasticity (or vice versa). For the case of uniform applied stress at infinity, f 0
01ðzÞ ¼ c1,

f 0
02ðzÞ ¼ c2, f 0

03ðzÞ ¼ c3, regardless of whether isotropy or anisotropy. Let us recall the statement in Section

1, Introduction: How can a solution for isotropic material be obtained from a solution for anisotropic

material with the same geometry and boundary condition? The case of a point force is to be illustrated.

Suppose the solution f 00ðzÞ, Eq. (3.1) for anisotropic material with a point force at ðx01; x02Þ is known. The
crucial point is, ‘‘can we obtain f 00ðzÞ, Eq. (3.5) for isotropic material with due care of the different nature of

f 0
02ðzÞ?’’ As seen above, in this case, the question is no more meaningful since we have both solutions already

at hand, however, it suggests some guidelines for the case of finite geometry. For the case of uniform

stresses at infinity, the problem becomes trivial. The result of the equivalence theorem in bimaterial system

is now explored as below.

Consider an anisotropic/anisotropic bimaterial bonded along x1-axis as shown in Fig. 1(a), in which a

singularity is located in lower half-space. Therefore, the elastic constants of material 2 are implied in the

homogeneous solution f 00ðzÞ. The bimaterial solution for a singularity can be constructed in terms of the
homogeneous one for the same singularity by using the method of analytic continuation (Suo, 1990; Choi

and Earmme, 2002a). We write the bimaterial solution of Suo (1990), though slightly different notations are

used, as

f 0ðzÞ ¼ B
1
1 ðIþ ibÞ
1ðIþ aÞB2f

0
0ðzÞ; in S1;

B
1
2 ðI
 ibÞ
1ða þ ibÞ�BB2

�ff 00ðzÞ þ f
0
0ðzÞ; in S2;

(
ð3:7Þ

where S1, the upper half-space, and S2, the lower half-space, are occupied by material 1 and 2, respectively.

Here the subscripts 1 and 2 denote the quantities corresponding to material 1 and 2, respectively. Even if

the material 1 is rigid or non-existent, the solution still remains valid. For the former case, a ¼ I and
b ¼ S2W
1

2 , and therefore,

f 0ðzÞ ¼ f 00ðzÞ 
 A

1
2
�AA2
�ff 00ðzÞ; in S2; ð3:8Þ

Fig. 1. Singularity and interfacial crack in dissimilar media.
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while for the latter case, a ¼ 
I, and therefore,

f 0ðzÞ ¼ f 00ðzÞ 
 B
1
2
�BB2
�ff 00ðzÞ; in S2: ð3:9Þ

If the anisotropic/anisotropic bimaterial shown in Fig. 1(a) becomes an isotropic/isotropic one, by ap-

plying the equivalence theorem, the bimaterial solution, Eq. (3.7) with isotropic A, B inserted, reduces to

f 0ðzÞ ¼ ½UðzÞ;XðzÞ;xðzÞ�T

¼

1þ a
1
 b

U0ðzÞ;
1þ a
1þ b

X0ðzÞ; ð1
 cÞx0ðzÞ
� �T

; in S1;

U0ðzÞ þ
a 
 b
1þ b

�XX0ðzÞ;X0ðzÞ þ
a þ b
1
 b

�UU0ðzÞ;x0ðzÞ þ c �xx0ðzÞ
� �T

; in S2:

8>><
>>: ð3:10Þ

Here, f 00ðzÞ as given in Eq. (3.5) is used. This result coincides with that of Suo (1989) and Choi and Earmme

(2002b). Also, for the case of the material 1 which is rigid or non-existent, by using Eq. (3.8) or (3.9),

respectively, similar result is obtained, but is not shown here.

Now we suppose that material 1 shown in Fig. 1(a) is isotropic, while material 2 has cubic symmetry, in

which the cubic axes coincide with the coordinate axes. The equivalence theorem also provide us with the

solution of a singularity in an isotropic/cubic bimaterial from Eq. (3.7), which is explicitly written as

f 0ðzÞ ¼

U1ðzÞ
X1ðzÞ
x1ðzÞ

2
4

3
5 ¼

1

2p
1þ a
1þ b

ð1þ l1iÞ
q1

z
 s1
þ ð1þ l2iÞ

q2
z
 s2

� �
1

2p
1þ a
1
 b

ð1
 l1iÞ
q1

z
 s1
þ ð1
 l2iÞ

q2
z
 s2

� �


ð1þ cÞq3
pðz
 s3Þ

2
6666664

3
7777775
; in S1;

B
1
2 ðI
 ibÞ
1ða þ ibÞ�BB2

�ff 00ðzÞ þ f
0
0ðzÞ; in S2:

8>>>>>>>>><
>>>>>>>>>:

ð3:11Þ

In the upper half-space S1, z ¼ x1 þ ix2, while in the lower half-space S2, z is reinterpreted by zj ¼ x1 þ pjx2,
where pj�s are given by Eqs. (A.3a) and (A.3b) for the cubic material 2. In other words, the isotropic

elasticity described in Section 2.2 should be used in the upper half-space, while the anisotropic elasticity

given in Section 2.1 in the lower half-space is used. It is worth noting that inplane and antiplane defor-

mations are generally coupled for isotropic/anisotropic bimaterials as they do for anisotropic/anisotropic

bimaterials. However, the inplane and antiplane deformations given by Eq. (3.11) are decoupled, since the

interface is {1 0 0} plane and the cubic axes coincide with the coordinate axes. The bimaterial solution,

Eq. (3.7), is also applicable for cubic (material 1)=isotropic (material 2) bimaterial with the application of
the equivalence theorem, however it is not shown here.

3.2. Near-tip field and stress intensity factor for interfacial crack

Consider a crack lying along the interface between two anisotropic materials with material 1 above and

material 2 below as shown in Fig. 1(c). Crack tip lies on the plane x2 ¼ 0 at x1 ¼ 0. Near-tip fields are given

by (Beom and Atluri, 1995)

f 0ðzÞ ¼

1

2
ffiffiffiffiffiffiffi
2pz

p B
1
1 ðIþ ibÞY½z
ie�GðzÞ þ B
1

1 ðIþ aÞHðzÞ; in S1;

1

2
ffiffiffiffiffiffiffi
2pz

p B
1
2 ðI
 ibÞY½z
ie�GðzÞ þ B
1

2 ðI
 aÞHðzÞ; in S2:

8>><
>>: ð3:12Þ

Here subscripts 1 and 2 refer to the materials 1 and 2, respectively, and Y½fðzÞ� is explicitly defined in terms

of the real bimaterial matrix b as (Qu and Li, 1991)
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Y½fðzÞ� � Iþ i

2b
½fðzÞ 
 �ffðzÞ�b þ 1

b2
1

�

 1

2
fðzÞ
h

þ �ffðzÞ
i�

b2; ð3:13Þ

where fðzÞ is an arbitrary function of z. The matrix function Y½fðzÞ� plays an important role in representing

the oscillatory fields near the crack tip. A Williams type expansion of the near-tip field is generated from

Eq. (3.12) by writing GðzÞ and HðzÞ in terms of Taylor series expansions as:

GðzÞ ¼
X1
n¼0

anzn; HðzÞ ¼
X1
n¼0

ibnzn; ð3:14Þ

where an and bn are real vectors. Then a0 represents the strength of the crack tip singularity, which was
defined as the stress intensity factor by Qu and Li (1991), while the coefficient b0 represents a stress acting

parallel to the crack surface (i.e., r11), which is referred to as the T-stress in the case of homogeneous

material (Rice, 1988). The stress r11 induced by b0 is uniform but different in each of the two materials.

The singular stress field along the bonded interface near the crack tip is given by

fr2jðx1Þg ¼ 1ffiffiffiffiffiffiffiffiffi
2px1

p Yðx
ie
1 ÞGðx1Þ: ð3:15Þ

Thus, the vector of stress intensity factors which uniquely characterizes the singular field can be defined by

(Qu and Li, 1991)

k ¼ lim
x1!0þ

ffiffiffiffiffiffiffiffiffi
2px1

p
Yðxie1 Þfr2jðx1Þg; ð3:16Þ

where k ¼ ½K2;K1;K3�T. The analytic functions generating the singular part of the interface stress can be

expressed in terms of k as

f 0ðzÞ ¼

1

2
ffiffiffiffiffiffiffi
2pz

p B
1
1 ðIþ ibÞY½z
ie�k; in S1;

1

2
ffiffiffiffiffiffiffi
2pz

p B
1
2 ðI
 ibÞY½z
ie�k; in S2:

8>><
>>: ð3:17Þ

For isotropic/isotropic bimaterial case, by applying the equivalence theorem again, it is straightforward to

show that Eq. (3.17) reduces to

f 0ðzÞ ¼
UðzÞ
XðzÞ
xðzÞ

2
4

3
5 ¼

�KKe
pez
1=2
ie

2
ffiffiffiffiffiffi
2p

p
cosh pe

;
Kepez
1=2þie

2
ffiffiffiffiffiffi
2p

p
cosh pe

;
K3

2
ffiffiffiffiffiffiffi
2pz

p
" #T

; in S1;

�KKepez
1=2
ie

2
ffiffiffiffiffiffi
2p

p
cosh pe

;
Ke
pez
1=2þie

2
ffiffiffiffiffiffi
2p

p
cosh pe

;
K3

2
ffiffiffiffiffiffiffi
2pz

p
" #T

; in S2:

8>>>>><
>>>>>:

ð3:18Þ

The asymptotic fields near the interfacial crack tip in an isotropic/cubic bimaterial (the material 1 is iso-

tropic, while the material 2 has cubic symmetry) are also obtained from Eq. (3.17), and explicitly expressed

as

f 0ðzÞ ¼

U1ðzÞ
X1ðzÞ
x1ðzÞ

2
4

3
5 ¼

�KKe
pez
1=2
ie

2
ffiffiffiffiffiffi
2p

p
cosh pe

;
Kepez
1=2þie

2
ffiffiffiffiffiffi
2p

p
cosh pe

;
K3

2
ffiffiffiffiffiffiffi
2pz

p
" #T

; in S1;

1

2
ffiffiffiffiffiffiffi
2pz

p B
1
2 ðI
 ibÞY½z
ie�k; in S2:

8>>>><
>>>>:

ð3:19Þ
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Note that the complex potentials given in S1 of Eq. (3.19) are identical to those for the isotropic/isotropic

bimaterial given in S1 of Eq. (3.18). Therefore, the anisotropy of the lower material contributes to the

asymptotic field in S1 only through the oscillatory index e (or equivalently b).
Although k defined in Eq. (3.16) does not have the proper dimension (Qu and Li, 1991), it provides a

unique characterization of the crack tip state. A stress intensity factor with the dimensions of stress times

square root of length, denoted by k̂kl can also be defined based on the characteristic length l as suggested by

Rice (1988) for the isotropic case, i.e., k̂kl is related to k by k̂kl ¼ Yðl
ieÞk. It is noted that the stress intensity

factor k given in Eq. (3.16) for the oscillatory field recovers the classical stress intensity factor ½KII;KI ;KIII�T
as the bimaterial continuum reduces to a homogeneous one. In the isotropic case, the definition of the stress

intensity factor given in Eq. (3.16) also reduces to that for the case of an isotropic/isotropic interface crack.

It is also obvious that the stress intensity factor defined in Eq. (3.16) uniquely characterizes the interfacial

crack tip state even in an anisotropic/isotropic bimaterial and is compatible with the definition of the
conventional stress intensity factor for isotropic/isotropic and anisotropic/anisotropic interface cracks.

3.3. Interaction between singularity and interfacial crack

Consider a semi-infinite interfacial crack in an anisotropic/anisotropic bimaterial interacting with a

singularity as shown in Fig. 2(a), which can be solved by the superposition scheme illustrated in Fig. 1.

Since we have the solution, Eq. (3.7), for Fig. 1(a), the problem in Fig. 1(b) is only discussed here, in which

the tractions tþðx1Þ ¼ 
t
ðx1Þ ¼ 
tðx1Þ are applied on the upper and lower surfaces of the crack, respec-

tively. The stress intensity factors are given by (Beom and Atluri, 1996)

k ¼
ffiffiffi
2

p

r Z 0


1
Y ð
h


 x1Þie cosh pe
i
tðx1Þ

dx1ffiffiffiffiffiffiffiffi
x1
p : ð3:20Þ

For the special case in which e ¼ 0 (non-oscillatory field), the matrix function Y in Eq. (3.20) is simply
replaced by I, which yields the identical result to that of Suo (1990). For the general isotropic/isotropic

bimaterial case, we utilize the equivalence theorem; hence, Eq. (3.20) with Y (Eq. (3.13)) evaluated for the

isotropic/isotropic bimaterial reduces to

Fig. 2. Interaction of singularity and interfacial crack.

1422 S.T. Choi et al. / International Journal of Solids and Structures 40 (2003) 1411–1431



k ¼
K2

K1

K3

2
4

3
5 ¼

ffiffi
2
p

q
cosh pe Im

R 0


1½t2ðx1Þ þ it1ðx1Þ�ð
x1Þ
1=2
ie
dx1

n o
ffiffi
2
p

q
cosh peRe

R 0


1½t2ðx1Þ þ it1ðx1Þ�ð
x1Þ
1=2
ie
dx1

n o
ffiffi
2
p

q R 0


1
t3ðx1Þdx1ffiffiffiffiffiffiffiffi
x1
p

2
666664

3
777775; ð3:21Þ

which coincides with the result of Suo (1989) and Cho et al. (1994). The stress intensity factors for a semi-

infinite crack in an anisotropic/anisotropic bimaterial interacting with singularities such as a point force and

a dislocation as shown in Fig. 1(c) can be calculated from Eq. (3.20) with the tractions from Eq. (3.7) given

as

tðx1Þ ¼ ðIþ ibÞ
1ðIþ aÞB2f
0
0ðx1Þ: ð3:22Þ

Next, a finite interfacial crack in the interval ð
a; aÞ in an anisotropic/anisotropic bimaterial interacting
with a singularity as shown in Fig. 2(b) is considered. The stress intensity factors for the finite crack are

obtained by (Beom and Atluri, 1996)

k ¼ 1ffiffiffiffiffiffi
pa

p
Z a


a
Y 2a

a
 x1
aþ x1


 �ie

cosh pe

" #
tðx1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ x1
a
 x1

r
dx1; ð3:23Þ

where the tractions tðx1Þ are given by Eq. (3.22). For the isotropic/isotropic bimaterial case, Eq. (3.23)

reduces to

k ¼
K2

K1

K3

2
4

3
5 ¼

ffiffiffi
2

p

r
cosh pe Im

Z a


a
½t2ðx1Þ þ it1ðx1Þ� 2a

a
 x1
aþ x1


 �
1=2
ie

dx1

( )
ffiffiffi
2

p

r
cosh peRe

Z a


a
½t2ðx1Þ þ it1ðx1Þ� 2a

a
 x1
aþ x1


 �
1=2
ie

dx1

( )

1ffiffiffiffiffiffi
pa

p
Z a


a
t3ðx1Þ

aþ x1
a
 x1


 �1=2

dx1

2
6666666664

3
7777777775
: ð3:24Þ

which coincides with the result of Suo (1989). It is emphasized again that the methods given in this section

are valid not only for anisotropic (homogeneous), isotropic (homogeneous), anisotropic/anisotropic, and

isotropic/isotropic materials but also for anisotropic/isotropic material, with the aid of the equivalence

theorem.

4. Conservation integral

The equivalence theorem proposed in Section 2 was utilized in the previous section for the problems of

singularities and interfacial cracks in dissimilar media. The theorem also provides us with a clue to the

similarity of conservation integrals in anisotropic solids and in isotropic solids, which is explored in this

section.

4.1. Path-independent property and complex variable form

The well-known J integral for an elastic solid, which is homogeneous in the x1 direction, is defined by

(Rice, 1968)
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Jfu;Cg ¼
Z

C
Wn1




 t � ou

ox1

�
ds: ð4:1Þ

HereW is the strain energy density, n is the unit outward normal vector, t is the surface traction, C is a path
connecting any two points on the opposite sides of the crack surface and enclosing the crack tip and ds is an
element of arc length along C as shown in Fig. 3. It is well known that the J integral is independent of any

path C, and has the physical meaning of energy release rate due to crack extension. Yeh et al. (1993)

obtained the complex form of the J integral for an anisotropic solid. They used a different normalization of

A and B from ours, and Kim et al. (2001) recently showed that the J integral can be written for the ar-

bitrarily normalized A and B matrices as

Jfu;Cg ¼ 2Im

Z
C
f 0TðzÞBTL
1Bf 0ðzÞdz

� �
: ð4:2Þ

It is noted that z should be properly replaced by z1, z2, and z3 before the manipulation of vectors and
matrices, that is, the J integral is written in a component form as

Jfu;Cg ¼ 2Im
X3

j;k;m¼1

Z
C
f 0
j ðzjÞBkjL
1

kmBmjf 0
j ðzjÞdzj

" #
: ð4:3Þ

For isotropic materials, Budiansky and Rice (1973) obtained the J integral in terms of Muskhelishvili

complex potentials, which is slightly modified in the following form:

Jfu;Cg ¼ 2Im

Z z0
2

z0
1

j þ 1

4G
UðzÞXðzÞ

�(
þ 1

4G
xðzÞxðzÞ

�
dz
 j þ 1

4G
x2UðzÞUðzÞ

� �z0
2

z0
1

)

¼ 2Im

Z
C
f 0TðzÞBTL
1Bf 0ðzÞdz

(

 j þ 1

4G
x2UðzÞUðzÞ

� �z0
2

z0
1

)
; ð4:4Þ

Fig. 3. Paths of conservation integrals.
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in which z01 and z02 correspond to the end points of the contour C and f 0ðzÞ, B, and L are those for isotropic

solids. It is remarked here that the J integral in a complex potential form for isotropic solids is identical to

that for anisotropic solids, provided that both end points of C are on x1-axis (x2 ¼ 0). Therefore, the J
integral in Eq. (4.2) is regarded as a general form expressed in terms of complex potentials for both
anisotropic and isotropic solids. In other words, the J integral in Eq. (4.2) may be used to obtain the energy

release rate due to crack extension in isotropic (homogeneous), anisotropic (homogeneous), isotropic/

isotropic, anisotropic/anisotropic, or isotropic/anisotropic materials, provided that the complex potentials

are known. The relation between the J integral and stress intensity factors can be derived through the

complex formula of the J integral in Eq. (4.2) with near-tip fields of an interfacial crack given by Eq. (3.17),

resulting in (Beom and Atluri, 1996)

Jfu;Cg ¼ 1
4
kTU
1k: ð4:5Þ

Here

U
1 ¼ ðL
1
1 þ L
1

2 ÞðIþ b2Þ: ð4:6Þ
Even if one or both of the constituent materials of the bimaterial are isotropic, the relation (4.5) with Eq.

(4.6) still remains valid. For example, for isotropic/isotropic bimaterials the J integral in Eq. (4.5) reduces

to

Jfu;Cg ¼ 1

16 cosh2 pe

j1 þ 1

G1



þ j2 þ 1

G2

�
ðK2

I þ K2
IIÞ þ

1

4

1

G1



þ 1

G2

�
K2

III: ð4:7Þ

Here, Eqs. (2.19) and (2.24) are used for L
1 ¼ RefM
1g and b, respectively, in the evaluation of Eq. (4.6).

In order to know the individual component of k, the mutual integral proposed by Chen and Shield
(1977) is found to be useful and it was exploited by Choi and Earmme (1992) even for circular arc-shaped

interfacial crack. Consider two independent equilibrium states of an elastically deformed bimaterial body,

with each displacement being denoted by u and ~uu, respectively. The J -based mutual integral for the two

states, denoted by Mfu; ~uu;Cg, is defined by (Chen and Shield, 1977)

Mfu; ~uu;Cg ¼
Z

C
trð~rr � ruÞn1

"

 t � o~uu

ox1

~tt � ou

ox1

#
ds; ð4:8Þ

where overscript tilde (�) represents the quantities associated with the equilibrium state ~uu. As noted by

Chen and Shield (1977), Mfu; ~uu;Cg can be written in terms of the J integral as

Mfu; ~uu;Cg ¼ Jfuþ ~uu;Cg 
 Jfu;Cg 
 Jf~uu;Cg: ð4:9Þ
The M integral satisfies the same conservation law as that of the J integral. Thus we have the following

conservation law:

Mfu; ~uu;C0g ¼ 0: ð4:10Þ

Here an area A enclosed by C0 containing the interface bonded perfectly is assumed to be free from any

singularities. This conservation law has been applied to the direct calculation of stress intensity factors

without actually solving complicated boundary value problems for isotropic bimaterial (Cho et al., 1994) as

well as for anisotropic bimaterial (Beom and Atluri, 1996). Making use of the complex form of the J in-

tegral and the relation between J integral and M integral in Eq. (4.9), it can be shown that the complex

form of the M integral is given by

Mfu; ~uu;Cg ¼ 4Im

Z
C
f 0TðzÞBTL
1B~ff 0ðzÞdz

� �
ð4:11Þ
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for anisotropic solids and

Mfu; ~uu;Cg ¼ 4Im

Z
C
f 0TðzÞBTL
1B~ff 0ðzÞdz

(

 j þ 1

4G
x2UðzÞ~UUðzÞ

� �z2
z1

)
ð4:12Þ

for isotropic solids. It is noted thatM integral also has the same complex form for anisotropic and isotropic

solids, provided that both end points of C are on x1-axis. Therefore, the mutual integral M in Eq. (4.11)

may also be used in isotropic (homogeneous), anisotropic (homogeneous), isotropic/isotropic, anisotropic/

anisotropic, or isotropic/anisotropic materials, provided that the complex potentials are known.

4.2. Auxiliary field and M integral

The mutual integral M defined by Eq. (4.8) is useful to determine the individual stress intensity factors

K1, K2 and K3 as well as T-stresses for the equilibrium state u as suggested by Chen and Shield (1977).

Though they dealt with the crack in a homogeneous isotropic medium, the mutual integral M can be used

to analyze the interfacial crack in anisotropic/anisotropic, isotropic/isotropic, and anisotropic/isotropic

bimaterials, provided that the solution for another equilibrium state ~uu, called the auxiliary solution, is

known. The auxiliary fields should satisfy (i) the equilibrium equation in the domain enclosed by the
contour C and (ii) the traction-free boundary condition on the crack surface enclosed by C. Due to the

equivalence theorem, the auxiliary solution for anisotropic/anisotropic bimaterial can also be used to

obtain the auxiliary solution for anisotropic (homogeneous), isotropic (homogeneous), isotropic/isotropic,

and anisotropic/isotropic materials. Now we summarize the auxiliary fields for the semi-infinite crack (Fig.

2(a)) and the finite crack (Fig. 2(b)) as follows (Beom and Atluri, 1996; Kim et al., 2001):

~ff 0ðjÞðzÞ ¼

1

2
ffiffiffiffiffiffiffi
2pz

p B
1
1 ðIþ ibÞYðz
ieÞêej; in S1;

1

2
ffiffiffiffiffiffiffi
2pz

p B
1
2 ðI
 ibÞYðz
ieÞêej; in S2;

8>><
>>: ð4:13Þ

~ff 0ðjÞðzÞ ¼

1

4
ffiffiffiffiffiffi
pa

p
ffiffiffiffiffiffiffiffiffiffiffi
zþ a
z
 a

r
B
1

1 ðIþ ibÞY 2a
z
 a
zþ a


 �
ie
" #

êej; in S1;

1

4
ffiffiffiffiffiffi
pa

p
ffiffiffiffiffiffiffiffiffiffiffi
zþ a
z
 a

r
B
1

2 ðI
 ibÞY 2a
z
 a
zþ a


 �
ie
" #

êej; in S2;

8>>>><
>>>>:

ð4:14Þ

~ff 0ðjÞðzÞ ¼
1

2piz
B
1

1 ðIþ aÞêej; in S1;

1

2piz
B
1

2 ðI
 aÞêej; in S2;

8><
>: ð4:15Þ

~ff 0ðjÞðzÞ ¼

1

2piðz
 aÞB

1
1 ðIþ aÞêej; in S1;

1

2piðz
 aÞB

1
2 ðI
 aÞêej; in S2:

8>><
>>: ð4:16Þ

Here êej (j ¼ 1,2,3) is the base vector with the component êejm ¼ djm, where djm is the Kronecker delta. Eqs.

(4.13) and (4.14) may be used to determine the individual stress intensity factors K1, K2 and K3 for the semi-
infinite crack and the finite crack, respectively, while T-stresses can be determined by using Eqs. (4.15) and

(4.16) for the semi-infinite crack and the finite crack, respectively.
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Now, we introduce the conservation integral Mfu; ~uuðjÞ;Cg, where ~uuðjÞ are the displacements generated by

the complex potentials given by one of Eqs. (4.13)–(4.16). The M integrals, which are evaluated with u and

the auxiliary fields, are related to stress intensity factors and T-stresses by

km ¼ 2
X3
j¼1

UmjMfu; ~uuðjÞ;Cg; ðm ¼ 1; 2; 3Þ ð4:17aÞ

Tm ¼ 1

8

X3
j¼1

VmjMfu; ~uuðjÞ;Cg; ðm ¼ 1; 2; 3Þ ð4:17bÞ

where U is given in Eq. (4.6), and V ¼ L1 þ L2. It is remarked that k ¼ ½k1; k2; k3�T ¼ ½K2;K1;K3�T. Here

T ¼ fTmg corresponds to b0 in Williams type expansions (i.e., Eq. (3.12) with Eq. (3.14)) representing stress

acting parallel to the crack surface. It is obvious that the mutual integrals M in Eqs. (4.17a) and (4.17b)

provide a sufficient information for determination of the individual stress intensity factors K1, K2 and K3 as

well as T-stresses r0
11 and r0

31. The M integral has the same path-independence as that of the J integral,
therefore, Eqs. (4.17a) and (4.17b) are valid for any path C tracing from the lower crack face to the upper

crack face. It is worth mentioning that the mutual integrals Mfu; ~uuðjÞ;Cg can be exploited to calculate

individual stress intensity factors and T-stresses numerically for a finite body. In the analysis of crack

problem by means of computational method, such as the finite element method, a fundamental difficulty is

encountered in efforts to compute the values of field quantities near the crack tip. The mutual integrals can

be evaluated along the contour remote from the crack tip where the numerical fields are more accurate.

4.3. Application of M integral to interfacial crack-singularity interaction

Two crack configurations in an infinite bimaterial as shown in Fig. 2(a) and (b) are considered, in which

the singularities such as a point load and a dislocation are embedded in the bimaterial. The interaction
problem can be solved by the superposition scheme as described in Section 3.3. However, to obtain the

stress intensity factors and T-stresses of the crack-singularity interaction problems, it is more convenient to

apply the conservation lawsMfu; ~uuðjÞ;C0g ¼ 0 without actually solving the boundary value problem. In this

section, based on the equivalence theorem and the analogy of the conservation integrals described in the

previous subsections, we utilize the mutual integral M to solve the problem of interfacial crack-singularity

interaction, and therefore the results given in this section are valid for anisotropic (homogeneous), isotropic

(homogeneous), anisotropic/anisotropic, isotropic/isotropic, and anisotropic/isotropic materials.

First, let us consider the semi-infinite crack as shown in Fig. 2(a). A contour C0 consisting of
Cþ

c þ C

c þ Cþ þ C
 þ C1 
 Cs 
 Cd as shown in Fig. 4(a) is chosen to compute the right hand sides of

Eq. (4.17a). Here Cþ and C
 are the interior paths, and Cs is a vanishingly small path enclosing the point

z ¼ s. The line integral over the parts Cþ þ C
 makes no contribution to Mfu; ~uuðjÞ;C0g. Furthermore, there

is no contribution from the infinitely large circle C1 because the stress components are rij ¼ Oð1=rÞ and
also ~rrij ¼ Oð1=rÞ as r ! 1. Thus, the conservation law Mfu; ~uuðjÞ;C0g implies

Mfu; ~uuðjÞ;Cdg ¼ 
Mfu; ~uuðjÞ;Csg: ð4:18Þ

Potentials near the singularity at z ¼ s can be written as (Suo, 1990)

f 0ðzÞ ¼ q

2pðz
 sÞ þ
ð�ss
 sÞQ � q
2pðz
 sÞ2

þ f̂f 0ðzÞ; ð4:19Þ

where f̂f 0ðzÞ is analytic at z ¼ s (but has a branch cut along the crack surface), and Qij ¼ 0 for an anisotropic
material and Qij ¼ di2dj1 for an isotropic material as described in Section 3.1. Eq. (4.19) is regarded as a
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general form of potentials near a point singularity regardless of whether anisotropic or isotropic materials,

and it provides us with the unified approach for both anisotropic and isotropic materials at the expense of

the mathematical simplicity. Substituting Eqs. (4.19) and (4.13) into Eq. (4.11), the integral in Eq. (4.18)

corresponding to each auxiliary field is easily evaluated by its residues and then substituted into Eq. (4.17a),

resulting in

km ¼
ffiffiffi
2

p

r X3
j;k;n;r¼1

Re

(

2Ymnðsiej ÞXnrðL
1

2 ÞrkðB2Þkj
qjffiffiffiffi
sj

p

þ Ymn½ð1
 2eiÞsiej �XnrðL
1
2 ÞrkðB2Þkj

ðQ2 � qÞjffiffiffiffi
sj

p
�ssj
sj

 

 1

!)
: ð4:20Þ

Here X ¼ ðI
 ibÞ
1ðL
1
1 þ L
1

2 Þ
1
, and k1 ¼ K2, k2 ¼ K1, and k3 ¼ K3. By using the auxiliary field, Eq.

(4.15), instead of Eq. (4.13) and following the same procedure that was used to obtain Eq. (4.20), we can get

Tm ¼ 
Im
X3
j;k¼1

1

2psj
ðL2B


T
2 ÞmjðB

T
2L


1
2 ÞjkðB2Þkj qj

"(

 �ssj

sj

 

 1

!
ðQ2 � qÞj

#)
; ð4:21Þ

for the semi-infinite crack of Fig. 2(a).

For the finite crack as shown in Fig. 2(b), by applying the similar arguments used for the semi-infinite

crack, in which the contour C0 consists of Cþ
c þ C


c þ Cþ þ C
 þ C1 
 Cs 
 Cd 
 C0
d as shown in Fig. 4(b)

and the auxiliary fields, Eqs. (4.14) and (4.16), are used instead of Eqs. (4.13) and (4.15), respectively, the

stress intensity factors and T-stresses for the finite crack are obtained as

km ¼ 
 2ffiffiffiffiffiffi
pa

p
X3

j;k;n;r;s¼1

UmkRe Ynk 2a
sj 
 a
sj þ a


 �
ie
" #

ðI

8><
>: 
 ibÞrnðL


1
2 ÞrsðB2Þsjqj

ffiffiffiffiffiffiffiffiffiffiffiffi
sj þ a
sj 
 a

s


 Ynk ð1
"

þ 2eiÞ 2a
sj 
 a
sj þ a


 �
ie
#
ðI
 ibÞrnðL


1
2 ÞrsðB2Þsj

ðQ2 � qÞjð�ssj 
 sjÞaffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j 
 a2

q
ðsj 
 aÞ

9>=
>;

þ 1ffiffiffiffiffiffi
pa

p
X3
j;k¼1

UmjYkj½ð2aÞ
ie�ðbþ bTL
1
1 pþW1pÞk; ð4:22Þ

Fig. 4. Integration contours for (a) the semi-infinite crack and (b) the finite crack.
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Tm ¼ 
Im
X3
j;k¼1

1

2pðsj 
 aÞ ðL2B

T
2 ÞmjðB

T
2L


1
2 ÞjkðB2Þkj qj

"(

 �ssj 
 sj

sj 
 a
ðQ2 � qÞj

#)
: ð4:23Þ

When material 2 is anisotropic, Q2 becomes zero matrix and therefore the stress intensity factors and

T-stresses given in Eqs. (4.20)–(4.23) are quite simplified.

5. Summary

The equivalence between the anisotropic and isotropic elasticity for two-dimensional deformation under

certain conditions is demonstrated in this paper. The isotropic elasticity can be reconstructed in the same

framework of the anisotropic elasticity, when the interface between dissimilar media lies along a straight

line. Therefore, many known solutions for an anisotropic bimaterial are directly used for a bimaterial, of

which one or both of the constituent materials are isotropic. The equivalence is useful to obtain the so-

lutions for singularities and cracks in an anisotropic/isotropic bimaterial without solving the boundary

value problems directly. The interaction solutions of singularities, interfaces, and cracks in dissimilar an-
isotropic media are summarized, to be used for the cases of isotropic/isotropic and anisotropic/isotropic

bimaterials. Conservation integrals also have the similar analogy between the anisotropic and isotropic

elasticity so that J integral and J -based mutual integral M are expressed in the same complex forms for the

anisotropic and isotropic materials, when both end points of the integration paths are on the straight in-

terface. The use of J and M integrals together with the present equivalence are exemplified to obtain energy

release rate, stress intensity factors, and T-stresses of interfacial cracks lying in the interface of anisotropic/

anisotropic, isotropic/isotropic, and anisotropic/isotropic bimaterials.
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Appendix A. Elastic matrices for cubic materials

The characteristic equation (2.6) for a cubic material, of which the cubic axes coincide with the coor-

dinate axes, reduces to

p4 þ gp2 þ 1 ¼ 0; for inplane deformation; ðA:1aÞ

p2 þ 1 ¼ 0; for antiplane deformation; ðA:1bÞ
in which g is expressed in terms of three independent elastic constants C11, C12, and C66 as

g ¼ C2
11 
 C2

12 
 2C12C66

C11C66

; ðA:2Þ

The roots of the characteristic equations (A.1), which cannot be real (Lekhnitskii, 1963), are

p1 ¼ 1
2
ði
ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
2
 g

p
Þ; p2 ¼ 1

2
ði
ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p



ffiffiffiffiffiffiffiffiffiffiffi
2
 g

p
Þ; for 
 2 < g < 2;

p1 ¼ i
2
ð
ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
g 
 2

p
Þ; p2 ¼ i

2
ð
ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p



ffiffiffiffiffiffiffiffiffiffiffi
g 
 2

p
Þ; for 2 < g;

�
ðA:3aÞ

p3 ¼ i: ðA:3bÞ
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Here the roots with positive imaginary parts are chosen. In the above eigenvalues, the degenerate case,

g ¼ 2, corresponds to transversely isotropic materials, which is not shown here. The anisotropic matrices

defined in Eqs. (2.6)–(2.8) reduce to

A ¼ 1

C66


 p21C11 þ C66

p21C11 
 C12


 p22C11 þ C66

p22C11 
 C12

0

ðC12 þ C66Þp1
p21C11 
 C12

ðC12 þ C66Þp2
p22C11 
 C12

0

0 0 i

2
666664

3
777775; ðA:4Þ

B ¼

p1 
p2 0

1 1 0

0 0 
1

2
4

3
5; ðA:5Þ

M
1 ¼

C11

ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p

C2
11 
 C2

12

i

C11 þ C12

0


 i

C11 þ C12

C11

ffiffiffiffiffiffiffiffiffiffiffi
g þ 2

p

C2
11 
 C2

12

0

0 0
1

C66

2
66666664

3
77777775
; ðA:6Þ

in which an arbitrary normalizing factor for A and B is chosen so that the matrix B is non-dimensional, and

the matrix A has the dimension of compliance, and therefore the matrix M has the dimension of stiffness.
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